Fuzzy logic в регуляторах фирмы Siemens.

В данный момент я обслуживаю АСУ ТП, построенную на оборудовании фирмы Siemens. Осваивая оборудование и подготавливая zip, наткнулся в каталоге Siemens на ПО Fuzzy logic и NEUROSYSTEMS.

Программный пакет PID Self-Tuner предназначен в основном для автоматической настройки температурных регуляторов, но также подходит для процессов регулирования уровня и потока. Благодаря стандартному интерфейсу пакет работает с:

- PID регулятором, встроенным в STEP7
- · пакетом Standard PID Control
- пакетом Modular PID Control
- интеллектуальными модулями регулирования FM 355 / FM 455

Пакет содержит электронное руководство, примеры и два функциональных блока

- FB TUNING_C для первичной on-line настройки и последующей подстройки непрерывного PID регулятора
- FB TUNING S для первичной on-line настройки и последующей подстройки шагового PID регулятора с и без обратной связи по положению.

Пакет Fuzzy Control++ предназначен для проектирования и запуска в эксплуатацию регуляторов, построенных на основе нечеткой логики. Пакет может также применяться в комбинации с традиционными ПИД регуляторами с целью использования преимуществ обоих подходов. Пакет состоит из инструмента конфитурирования и функциональных блоков для ПЛК SIMATIC S7-300/400.

Пакет NeuroSystems предназначен для проектирования и обучения нейронных сетей, которые могут применяться для управления плохо изученными процессами. Например, они используются в нелинейных многосвязных системах. В объем поставки входит пакет проектирования и обучения нейронных сетей, а также функциональные блоки для ПЛК SIMATIC S7-300/400

Цены (граница Германии) и заказные номера

Наименование		Заказной номера	Цена, €	
Standard PID Control	Пакет параметрирования V5.2	6ES7 830-2AA22-0YX0	358	
	Стандартные функциональные блоки V5.2 (CPU313 и выше)	6ES7 860-2AA21-0YX0	537	
	Стандартные функциональные блоки V5.2 – только лицензия	6ES7 860-2AA21-0YX1	107	
Modular PID Control	Пакет параметрирования V5.1	6ES7830-1AA11-0YX0	337	
	Стандартные функциональные блоки V5.1 (CPU313 и выше)	6ES7860-1AA10-0YX0	675	
	Стандартные функциональные блоки V5.1 – только лицензия	6ES7860-1AA10-0YX1	135	
PID Self-Tuner	PID Self-Tuner V5.1 функциональные блоки	6ES7860-4AA01-0YX0	250	
	PID Self-Tuner V5.1 функциональные блоки - только лицензия	6ES7860-4AA01-0YX1	50	
Fuzzy Control++	Пакет параметрирования + FB (CPU314 и выше)	2XV9 450-1WC10-0BA0	350	
	Лицензия на копирование	2XV9 450-1WC11-4XA0	150	
NeuroSystems	Пакет параметрирования + FB (CPU314 и выше)	2XV9 450-1WC15-0AA0	2 400	
	Лицензия на копирование	2XV9 450-1WC16-4XA0	150	

Дополнительную информацию по продукту Вы можете найти в каталоге ST70, CA01 и в интернете по адресу www.siemens.ru/ad/as

На сайте Siemens зарегистрировавшись можно скачать эти регуляторы. Программное обеспечение PCS-7, включает в себя и верхний и нижний уровень АСУ ТП. Построение схем управления исполнительными механизмами производиться СFС-схемами которые строятся из функциональных блоков. Рис.№1.

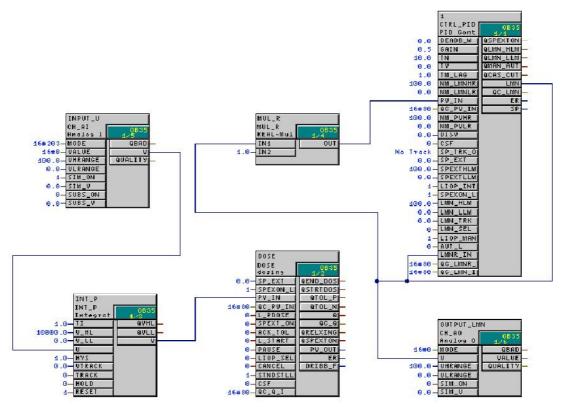


Рис.№1. CFC-схема.

Эти схемы загружаются в контроллер. К большинству блоков, таких как CTRL_PID, FuzzyControl и др. для управления с верхнего уровня автоматически создаются панели управления (паспорта). Рис. N2. Более подробно по работе с PCS-7 можно узнать из документа PCS7_GettingStarted_V6_r.pdf.

	6			7	
	Fuzzy_FB_4K	0835 4/-		Fuzzy_FB_20K	0835 5/-
0.0-	R INPUT1	OUTPUT1 R	0.0-	R INPUT1	OUTPUT1 R
0.0-	R INPUT2	OUTPUT2 R	0.0-	R INPUT2	OUTPUT2 R
0.0-	R INPUTS	OUTPUT3 R	0.0-	R INPUT3	OUTPUT3 R
0.0-	R INPUT4	OUTPUT4 R	0.0-	R INPUT4	OUTPUT4 R
0.0-	R INPUTS	INFO BY	0.0-	R INPUTS	INFO BY
0.0-	R INPUT6	QMSG_ERR BO	0.0-	R INPUT6	QMSG_ERR BO
0.0-	R INPUT7	D_NAME_RW S	0.0-	R INPUT7	D_NAME_RW SI-
0.0-	R INPUT8	ANZA_INPU BY	0.0-	R INPUT8	ANZA_INPU BY
0-	BO LIOP_SEL	ANZA_OUTP BY	. 0—	BO LIOP_SEL	ANZA_OUTP BY
0-	BO AUT_L	ANZA_REGE I	. 0—	BO AUT_L	ANZA_REGE I
16#1E-	W DB_No	QMAN_AUT BO	16#1F—	W DB_No	QMAN_AUT BO
16#0	W START_ST	QRET_ERRO BO	16#0	W START_STO	QRET_ERRO BO
		QSTATUS W	.		QSTATUS W

Рис.№2. Функциональные блоки FuzzyControl.

Так выглядят функциональные блоки FuzzyControl. Puc.№2. А так выглядит паспорт (панель управления) FuzzyControl для верхнего уровня. Puc.№3.

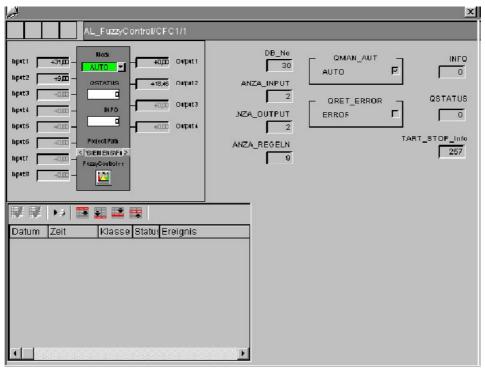


Рис.№3. Панель управления.

Для настройки функционального блока используется отдельная программа конфигуратор. Рис.№4.

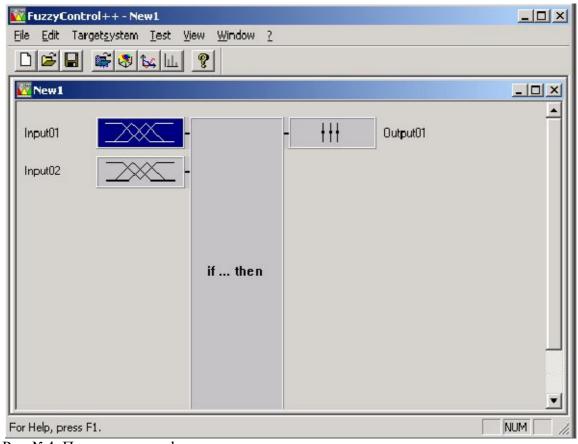


Рис.№4. Программа конфигуратор.

В ней задается, сколько входов и выходов будет использоваться у функционального

блока. Если кликнуть мышкой по изображению входных терм одного из входов, откроется окно настройки этих терм.Рис.№5.

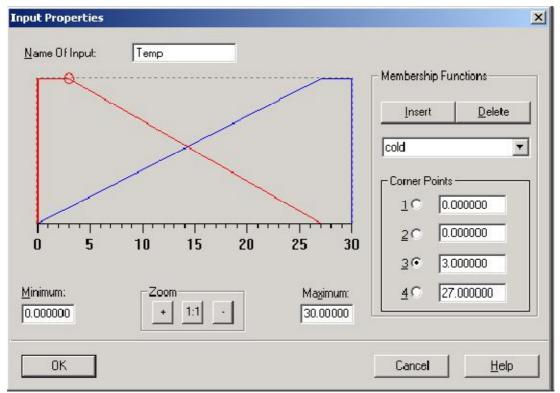


Рис.№5. Окно настройки входных терм.

Если кликнуть мышкой по среднему прямоугольнику, с надписью «if…then», то откроется окно настройки базы знаний. Рис.№6.

База знаний для управления клапаном:

- 1. Если Температура "низкая" и Давление "низкое" тогда Клапан "приток"
- 2. Если Температура " низкая " и Давление "высокое" тогда Клапан "закрыт"
- 3. Если Температура "высокая" и Давление "низкое " тогда Клапан "закрыт"
- 4. Если Температура " высокая " и Давление "высокое" тогда Клапан "отток"

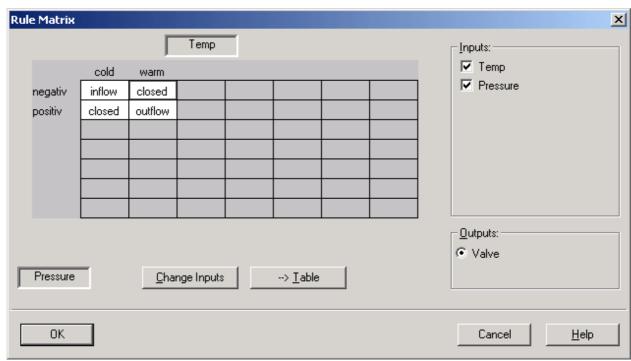


Рис.№6. База знаний.

Двойной щелчок мышкой на прямоугольнике рядом с надписью «Output01» открывает окно настройки выходных терм. Рис.№7.

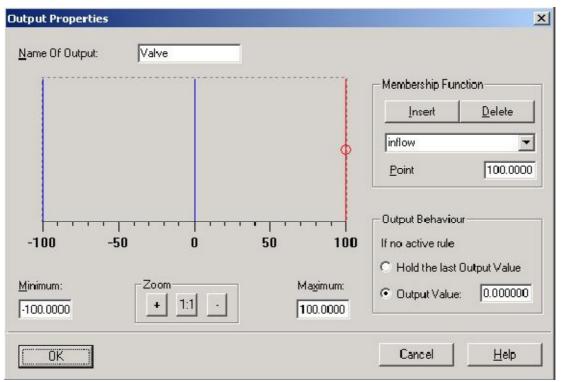


Рис.№7. Выходные термы.

Так же можно проверить, как каждый выход будет отрабатывать в зависимости от входных величин. Входа назначены на оси X и Y, а выход с Fuzzy logic на ось Z. Можно наглядно увидеть, как будет меняться выходная переменная от входных переменных. Рис.№8.

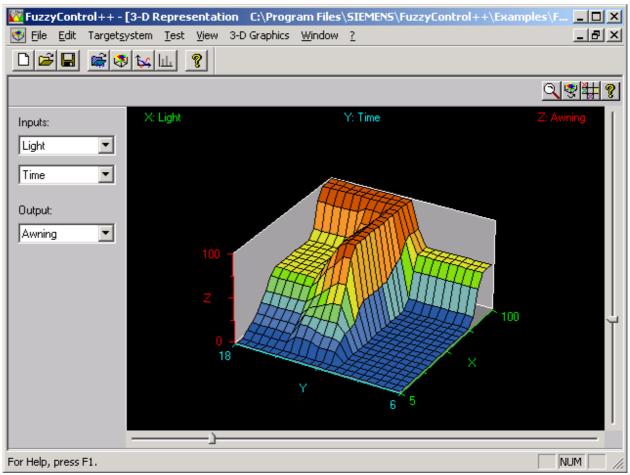
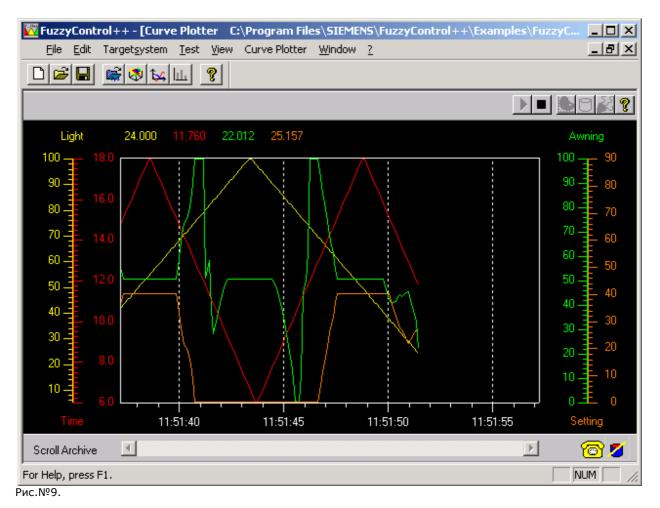
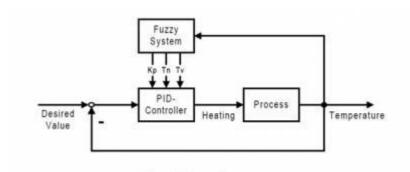



Рис.№8. 3D дисплей.

Есть еще один инструмент для тестирования регулятора, он так же позволяет просмотреть эти переменные в графиках и записать в память. Рис. \mathbb{N}_{2} 9.

Так же вместе с программным пакетом Fuzzy Control, приводиться несколько примеров с применением нечеткой логики. Один из примеров это изменение коэффициентов ПИД регулятора с помощью Fuzzy System, в зависимости от температуры. Рис.№10.



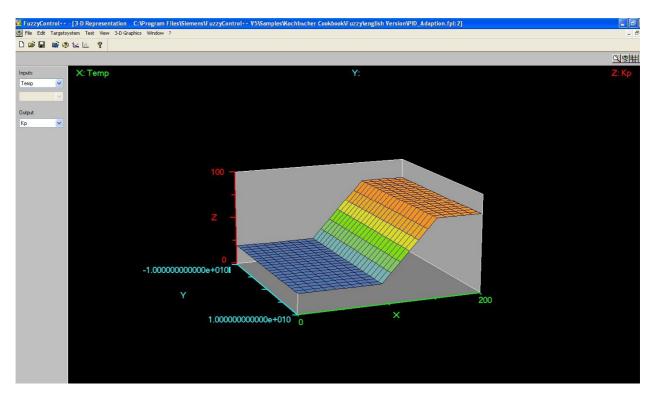
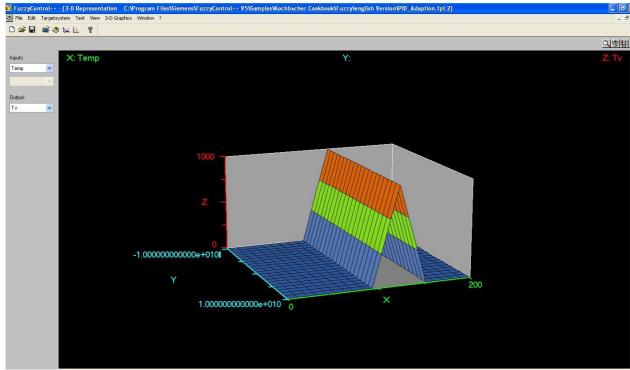
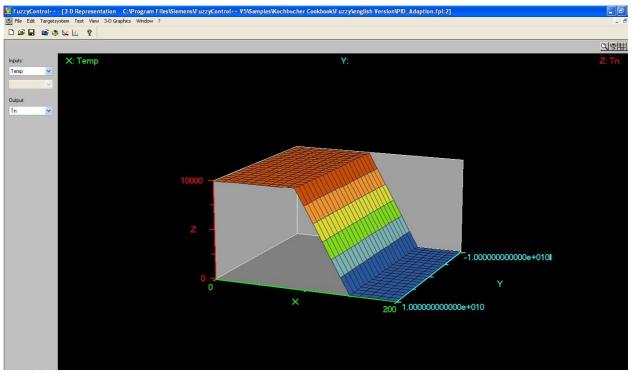

Figure 5: Controller structure

Рис.№10.

По этой таблице должны изменяться коэффициенты ПИД регулятора


http://chipsystem.ru/

Temperature T	cold (< 105°C)	warm (105°C to 135°C)	hot (> 135°C)	
Kp	small (20)	medium (50)	large (80)	
T _N [ms]	large (10.000) medium (5.000)	medium (5.000)	small (0)	
T _V [ms]	small (0)	medium (1.000)	small (0)	



Коэффициент Кр.

http://chipsystem.ru/

Коэффициентов Кі.

Коэффициент Tv в 3D.

Второй пример: управление задвижкой по давлению и скоростью изменения давления.

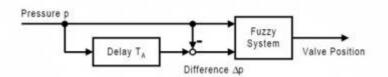
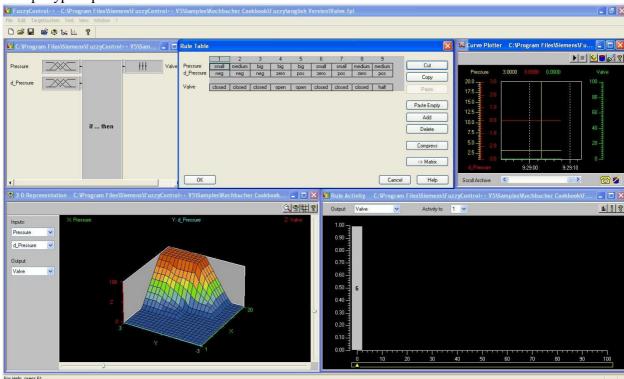


Рис. 11. · Клапан принимает три положения: закрыт, на половину открыт и открыт (0%, 50% и 100%). Эти положения клапана соответствуют выходным термам.

Valve Position	closed	half	open
1811/08/09/09/09/09	0 %	50 %	100 %


Давление р и скорость изменения давления Dp делится на три состояния.

Pressure p	small	medium	big
	< 10 bar	10 bar to 14 bar	> 14 bar
		1170	
Pressure Change An	neo	Zem	pos
Pressure Change Δp	neg	zero	pos

Такая вот база знаний.

Valve Position		Pressure p		
vaivero	sition	small	medium	big
	neg	closed	closed	closed
Pressure	zero	closed	closed	open
Change ∆p	pos	closed	half	open

Конфигуратор.

Да и очень интересное онлайн обучение по автоматике и оборудованию Siemens, можно

http://chipsystem.ru/

посмотреть здесь.

http://old.automation-drives.ru/as/support/applications/

Скачать демоверсию ПО FuzzyControl можно здесь:

 $\frac{http://www.industry.siemens.com/services/global/en/IT4Industry/products/process_control/fuzzy_control/Pages/default_tab.aspx?tabcardname=Downloads}$